jueves, 2 de junio de 2016

HISTORIA DE ATOMO

HISTORIA DEL ÁTOMO


Desde la antigüedad , el ser humano se ha cuestionado de que estaba hecha la materia.

Unos 400 años antes de Cristo , el filosofo griego Democrito considero que la materia estaba constituida por pequeñísimas partículas que no podían ser divididas en otras mas pequeñas . Por
ello , llamó a estas partículas átomos , que en griego quiere decir "indivisible" . Democrito atribuyo
a los átomos las cualidades de ser eternos , inmutables e indivisibles .



Sin embargo las ideas de Democrito sobre la materia no fueron aceptadas por los filósofos de su
época y hubieron de transcurrir cerca de 2200 años para que la idea de los átomos fuera tomada de nuevo en consideración .















ESTRUCTURA DEL ATOMO

En el átomo distinguimos dos partes : el núcleo y la corteza .
El núcleo es la parte central del átomo y contiene partículas con carga positiva , los protones , y
partículas que no poseen carga eléctrica , es decir son neutras , los neutrones . La masa de un proton es aproximadamente igual a la de un neutron .
Todos los átomos de un elemento químico tienen en el núcleo el mismo numero de protones . Este numero , que caracteriza a cada elemento y lo distingue d los demás , es el numero atómico y se representa con la letra Z .



La corteza es la parte exterior del átomo . En ella se encuentran los electrones , con carga negativa .
Estos , ordenados en distintos niveles , giran alrededor del núcleo . La masa de un electrón es unas 2000 veces menor que la de protón .


Los átomos son electricamente neutros , debido a que tienen igual numero de protones que de electrones . Así , el numero atómico tambiém coincide con el numero de electrones .












La suma del número de protones y el número de neutrones de un átomo recibe el nombre de número másico y se representa con la letra A .
Para representar un átomo , hay que indicar el número másico (A) y el número atómico (Z) , colocados como índice y subíndice , respectivamente , a la izquierda del símbolo del elemento .







Arquimedes




Arquimedes



Un cuerpo sólido está sumergido en dos líquidos inmiscibles: agua y aceite. Determinaremos la densidad de dicho cuerpo por dos métodos distintos:

El principio de Arquímedes
La ecuación fundamental de la estática de fluidos

El aceite que tiene una densidad 0.8 g/cm3 se sitúa en la parte superior y el agua que es más densa 1.0 g/cm3 se sitúa en la parte inferior del recipiente.
La densidad del bloque es un número al azar comprendido entre la densidad del aceite 0.8, y la del agua 1.0. Un cuerpo de esta densidad flota entre los dos líquidos.


Principio de ArquímedesConociendo que parte del sólido está sumergido en aceite (fluido 1) o en agua (fluido 2), se determinará la densidad de dicho cuerpo.








Consideremos una esfera de radio R que tiene una densidad ρ<1 y que se mantiene completamente sumergida en agua. Se suelta la esfera y se observa su movimiento oscilatorio
En esta página, vamos a comprobar que su comportamiento difiere del Movimiento Armónico Simple (M.A.S.).



Ecuación del movimiento
Supondremos que el agua y el aire son fluidos ideales, que no ejercen fuerzas de rozamiento sobre la esfera en movimiento.
Para describir el movimiento, situamos el origen del eje X en la superficie del agua y llamamos x a la posición del centro de la esfera
Cuando x=-R, la esfera se encuentra completamente sumergida
Cuando x=+R la esfera se encuentra justamente fuera del agua

Cuando la esfera se encuentra parcialmente sumergida las fuerzas que actúan son:
El peso mg
El empuje E

Para una esfera de densidad ρ relativa al agua (cuya densidad es la unidad) la masa es


El empuje es el peso en agua del volumen de la parte sumergida. Calculamos el volumen de la parte de la esfera sumergida en agua. Este volumen V es la suma (integral) de los elementos diferenciales de volumen de radio y y de altura dx, uno de los cuales se muestra en la figura.

Cuando x=-R obtenemos el volumen de la esfera 4πR3/3
La ecuación del movimiento es

Para calcular la posición x del centro de la esfera en función del tiempo t, resolvemos esta ecuación diferencial por procedimientos numéricos con las siguientes condiciones iniciales, en el instante t=0, x=-R, dx/dt=0. Cuando la esfera se encuentra completamente sumergida x=-R se suelta (su velocidad inicial es cero)
Transformamos la ecuación diferencial de segundo orden, en la ecuación diferencial de primer orden

Que podemos integrar entre x=-R donde la velocidad de la esfera es nula (posición inicial) y la posición x≤R, donde la velocidad es v.